
OBJECT ORIENTED
PROGRAMMING USING C++

 2000 Deitel & Associates, Inc. All rights reserved. 2000 Deitel & Associates, Inc. All rights reserved.

Chapter 17 - The Preprocessor

Outline
17.1 Introduction
17.2 The #include Preprocessor Directive
17.3 The #define Preprocessor Directive: Symbolic Constants
17.4 The #define Preprocessor Directive: Macros
17.5 Conditional Compilation
17.6 The #error and #pragma Preprocessor Directives
17.7 The # and ## Operators
17.8 Line Numbers
17.9 Predefined Symbolic Constants
17.10 Assertions

 2000 Deitel & Associates, Inc. All rights reserved. 2000 Deitel & Associates, Inc. All rights reserved.

17.1 Introduction

• preprocessing
– occurs before a program is compiled.
– inclusion of other files
– definition of symbolic constants and macros,
– conditional compilation of program code
– conditional execution of preprocessor directives

• Format of preprocessor directives:
– lines begin with #
– only whitespace characters before directives on a line
– they are not C++ statements - no semicolon (;)

 2000 Deitel & Associates, Inc. All rights reserved. 2000 Deitel & Associates, Inc. All rights reserved.

17.2 The #include Preprocessor Directive

• #include
– copy of a specified file included in place of the directive
#include <filename> - searches standard library for file

(use for standard library files)
#include "filename" - searches current directory, then

standard library (use for user-defined files)

• Used for
– loading header files (#include <iostream>)
– programs with multiple source files to be compiled together
– header file - has common declarations and definitions (classes,

structures, function prototypes)
• #include statement in each file

 2000 Deitel & Associates, Inc. All rights reserved. 2000 Deitel & Associates, Inc. All rights reserved.

17.3 The #define Preprocessor Directive:
Symbolic Constants

• #define
– preprocessor directive used to create symbolic constants and

macros.

• Symbolic constants
– when program compiled, all occurrences of symbolic constant

replaced with replacement text

• Format: #define identifier replacement-text
– Example: #define PI 3.14159
– everything to right of identifier replaces text
#define PI = 3.14159

• replaces "PI" with " = 3.14159", probably results in an error
– cannot redefine symbolic constants with more #define

statements

 2000 Deitel & Associates, Inc. All rights reserved. 2000 Deitel & Associates, Inc. All rights reserved.

17.4 The #define Preprocessor Directive:
Macros

• Macro - operation defined in #define
– intended for C programs
– macro without arguments: treated like a symbolic constant
– macro with arguments: arguments substituted for replacement text,

macro expanded
– performs a text substitution - no data type checking

Example:
#define CIRCLE_AREA(x) (PI * (x) * (x))

area = CIRCLE_AREA(4);

becomes
area = (3.14159 * (4) * (4));

 2000 Deitel & Associates, Inc. All rights reserved. 2000 Deitel & Associates, Inc. All rights reserved.

17.4 The #define Preprocessor Directive:
Macros (II)

• use parenthesis:
– without them,
#define CIRCLE_AREA(x) PI * (x) * (x)
area = CIRCLE_AREA(c + 2);

becomes
area = 3.14159 * c + 2 * c + 2;

which evaluates incorrectly

• multiple arguments:
#define RECTANGLE_AREA(x, y) ((x) * (y))
rectArea = RECTANGLE_AREA(a + 4, b + 7);

becomes
rectArea = ((a + 4) * (b + 7));

• #undef
– undefines a symbolic constant or macro, which can later be

redefined

 2000 Deitel & Associates, Inc. All rights reserved. 2000 Deitel & Associates, Inc. All rights reserved.

17.5 Conditional Compilation

• conditional compilation
– control preprocessor directives and compilation
– cast expressions, sizeof, enumeration constants cannot be

evaluated

• structure similar to if
#if !defined(NULL)

#define NULL 0
#endif

– determines if symbolic constant NULL defined
• if NULL is defined, defined(NULL) evaluates to 1
• if NULL not defined, defines NULL as 0

– every #if ends with #endif
– #ifdef short for #if defined(name)
– #ifndef short for #if !defined(name)

 2000 Deitel & Associates, Inc. All rights reserved. 2000 Deitel & Associates, Inc. All rights reserved.

17.5 Conditional Compilation (II)

• Other statements:
#elif - equivalent of else if in an if structure
#else - equivalent of else in an if structure

• "Comment out" code
– cannot use /* ... */
– use

#if 0
code commented out

#endif

to enable code, change 0 to 1

 2000 Deitel & Associates, Inc. All rights reserved. 2000 Deitel & Associates, Inc. All rights reserved.

17.5 Conditional Compilation (III)

• Debugging

#define DEBUG 1

#ifdef DEBUG
cerr << "Variable x = " << x << endl;

#endif

Defining DEBUG enables code. After code corrected, remove #define
statement and debugging statements are ignored.

 2000 Deitel & Associates, Inc. All rights reserved. 2000 Deitel & Associates, Inc. All rights reserved.

17.6 The #error and #pragma
Preprocessor Directives

• #error tokens
– tokens - sequences of characters separated by spaces

• "I like C++" has 3 tokens
– prints message and tokens (depends on implementation)
– for example: when #error encountered, tokens displayed and

preprocessing stops (program does not compile)

• #pragma tokens
– implementation defined action (consult compiler documentation)
– pragmas not recognized by compiler are ignored

 2000 Deitel & Associates, Inc. All rights reserved. 2000 Deitel & Associates, Inc. All rights reserved.

17.7 The # and ## Operators

• # - replacement text token converted to string with quotes
#define HELLO(x) cout << "Hello, " #x << endl;

HELLO(John) becomes
cout << "Hello, " "John" << endl;

• strings separated by whitespace are concatenated when using cout

• ## - concatenates two tokens
#define TOKENCONCAT(x, y) x ## y

TOKENCONCAT(O, K) becomes
OK

Notice #

 2000 Deitel & Associates, Inc. All rights reserved. 2000 Deitel & Associates, Inc. All rights reserved.

17.8 Line Numbers

• #line
– renumbers subsequent code lines, starting with integer value
– file name can be included

• #line 100 "myFile.c"
– lines are numbered from 100 beginning with next source code file
– for purposes of errors, file name is "myFile.c"
– makes errors more meaningful
– line numbers do not appear in source file

 2000 Deitel & Associates, Inc. All rights reserved. 2000 Deitel & Associates, Inc. All rights reserved.

17.9 Predefined Symbolic Constants

• Five predefined symbolic constants
– cannot be used in #define or #undef

Symbolic c onstant Desc rip tion

__LINE__ The line number of the current source code line (an integer
constant).

__FILE__ The presumed name of the source file (a string).
__DATE__ The date the source file is compiled (a string of the form

"Mmm dd yyyy" such as "Jan 19 2001").
__TIME__ The time the source file is compiled (a string literal of the

form "hh:mm:ss").

 2000 Deitel & Associates, Inc. All rights reserved. 2000 Deitel & Associates, Inc. All rights reserved.

17.10 Assertions

• assert macro
– header <cassert>
– tests value of an expression
– if 0 (false) prints error message and calls abort
assert(x <= 10);

• if NDEBUG defined, all subsequent assert
statements ignored
– #define NDEBUG

